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Abstract A postulate is enunciated involving the construction of the quantum
mechanical linear momentum vector in position space. This proposal leads to a coher-
ent Heisenberg uncertainty relation for a Gaussian model density function. Such result
is then used as starting point to obtain algorithms to perform kinetic energy calcula-
tions, when only the density function of a given system is known. The general theo-
retical framework is described and several density function types, including ab initio
formulation, are used as application examples.

Keywords Momentum operator in position space · Gaussian model density
functions · Heisenberg’s uncertainty · Kinetic energy · Atomic shell approximation
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1 Introduction

The nature of the kinetic energy in quantum mechanics constitutes an old problem
which has been deeply studied since the need of an operator description in quantum
mechanics up to recent times, see for example [1–3] and references therein. In order
to spare a large set of references, the authors encourage the potential readers to use
the ones provided by the previous citations. The first quotation [1] clearly identifies
the ambiguous nature of kinetic energy and provides a helpful set of hints which
can be considered to obtain alternative expressions for it. One can say the present
contribution relies essentially on such starting point, while trying to find out another
kind of plausible path towards kinetic energy practical evaluation.
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The present work cannot be seen as an isolated contribution to the solving of the
quantum mechanical kinetic energy nature problem. It must be considered as the first
step to set up a computational system allowing quantum chemically based studies
of very large molecules under approximate density function knowledge, like the one
provided by the atomic shell approximation [10–12].

Furthermore, if this contribution has to be fully justified, one can state the fact
consisting into that a computational problem appears when, for some practical reason,
there is needed the kinetic energy value of some system and only the first order density
function is known. This could be the case in DFT procedures like the well-known and
widespread Kohn-Sham method [4]. The present paper tries to develop a possible
approximate but reasonable solution to this enunciate.

The basic approach suggested here proposes a postulate. Such working scheme
possibility considers the momentum vector representation in position space might
be directly constructed from the usual gradient-like, quantum mechanical momen-
tum operator. As an initial step, it will be shown that such a postulate provides a
coherent Heisenberg’s indetermination picture for a system, solely defined by means
of a schematic density function. Such a result could indicate the postulated descrip-
tion of momentum in position space can be admitted as a reasonable workout proposal
demanding further development. Also the coherent connection of the proposed kinetic
energy evaluation problem with Heisenberg’s uncertainty relations will be also dis-
cussed as a hint of the reasonable computational framework, which can be easily
developed afterwards.

The scheme of this contribution can be therefore described as follows. First an
analysis involving a model system made by a Gaussian function is discussed. To this
introduction it will follow a general point of view of the problem, which opens the way
to study three related application examples. Another simple density function made by
two Gaussian functions centered at two different points of space will be studied in a
first place. A simplified density function under the ASA scheme will be developed as
a second example. A third example related to the simplified form of nuclear density
functions will be described in full. Finally, the use of ab initio density functions to
obtain momentum variances and the kinetic energy will end the present study.

2 Postulating momentum representation in position space and the connection
with Heisenberg indetermination relation in a Gaussian density function
framework

One can start proposing to use a unique Gaussian function as a model density function,
which can be defined like:

γ (r) =
(α

π

) 3
2

g (r |α ) =
(α

π

) 3
2

exp
(
−α |r|2

)
→ 〈γ (r)〉 = 1.

It is irrelevant that the Gaussian center can be located in another point of space, say
R �= 0, or not.
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In this simple example the mean position will be zero, and one can write accordingly:

〈r〉 ≡ 〈rγ (r)〉 = 0.

The position variance can be also easily written in three dimensional spaces, as the
following integral can be proposed to evaluate it:

var (r) =
〈
|r|2 γ (r)

〉
= 3

2α
.

On the other hand, as it is well-known in time independent quantum mechanics, the
momentum operator can be written as the gradient operator: i h̄ ∂

∂r and thus its effect
on the Gaussian density function model can be also readily obtained as:

p ≡ i h̄
∂

∂r
γ (r) = −2αi h̄r

(α

π

) 3
2

exp
(
−α |r|2

)
= −2αi h̄rγ (r)

Taking as a postulate the equivalence in the upper expression and considering the
result consequently as a momentum representation in position space, one can also see
that the mean momentum will be null, admitting as a part of the postulate, that it can
be also written:

〈p〉 ≡ −2αi h̄ 〈rγ (r)〉 = 0

Then according to the momentum representation postulate, the squared module of the
momentum expression can be also considered as a Euclidean norm:

|p|2 = p∗ · p ≡ 4α2h̄2 |rγ (r)|2 ,

so the momentum variance can be readily computed as:

〈
|p|2

〉
≡ var (p) ≡ 4α2h̄2

(α

π

)3
∫

D

|r|2 exp
(
−2α |r|2

)
dV = 3α

( α

2π

) 3
2

h̄2

It must be noted and stressed here that the momentum squared module is not obtained
like in the usual quantum mechanical way, but taking into account the imaginary
numbers algebra. So, using instead of i2 = −1, the positive real result issuing from:
|i |2 = i∗i = (−i) i = +1 .

2.1 Heisenberg indetermination

Thus, the product of both position and momentum variances might be written as:

var (r) var (p) ≡
[

3

2α

] [
3α

( α

2π

) 3
2

h̄2
]
= 9

2

( α

2π

) 3
2

h̄2,
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the factor 9 is obviously related to the dimension of position space. This result can
be also interpreted as constituting a statement of Heisenberg indetermination relation,
attached to this simple Gaussian model density and the postulated momentum repre-
sentation in position space. It can be expressed in an equivalent way, just taking the
square root of both sides, thus resulting into an alternative Heisenberg’s relation, but
now involving the position and momentum standard deviations:

σ (r) σ (p) ≡ 3
√

2

2

( α

2π

) 3
4

h̄.

The appearance of the Gaussian exponent might indicate the connection with the nature
of the density described object, sharper (more localized) this object becomes the factor
will increase, softer (more delocalized) the object density appears, and then the factor
will diminish. At the extreme values the point-like and completely widespread object
charges respectively, the factor becomes infinite and zero, corresponding to what can
be considered completely localized and delocalized descriptions.

It must be noted the fact that both position and momentum variances possess the
Gaussian exponent in inverse and direct proportion respectively. So, sharper the den-
sity, then momentum variance will grow, while the position variance will decrease and
such situation will appear reversed when softer the density distribution becomes.

Such a result must be compared with a previous published one, where the momen-
tum representation in momentum space was employed [5] to obtain a Heisenberg
indetermination formula. In this previous case the presence of the Gaussian exponent
was not present at the right of the equality.

3 Momentum representation postulate and Heisenberg indetermination
relation in a general density expression

Given a density function: ρ (r), attached to any submicroscopic system, such coherent
result between the postulated momentum definition in position space and the indeter-
mination principle obtained in the previously studied Gaussian model, precludes the
possibility to extend as a general postulate the following definition of momentum in
position space:

p ≡ i h̄
∂

∂r
ρ (r) .

In this case the mean position and momentum values can be non-null and their squared
modules will be needed in the corresponding variance definitions, like:

〈r〉 ≡ 〈rρ (r)〉 → |〈r〉|2 ≡ |〈rρ (r)〉|2 ,

an expression which is related to the dipole momentum expectation value. Thus, in
atoms and apolar molecular structures such value is null, like in the previous Gaussian
model case. The postulated momentum will furnish the following expectation value:
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〈p〉 ≡
〈
i h̄

∂

∂r
ρ (r)

〉
→ |〈p〉|2 ≡ h̄2

∣∣∣∣
〈

∂

∂r
ρ (r)

〉∣∣∣∣
2

and the corresponding variances could be written accordingly. First, one can write:

var (r) ≡ 〈|r|2 ρ (r)〉 − |〈rρ (r)〉|2 ,

which can be related to the trace of the quadrupole momentum tensor as well as
to the squared module of the dipole moment, and thus it is resulting into a definite
non-negative parameter, translationally and rotationally invariant. Then, the postulated
momentum variance will be computed as:

var (p) ≡ h̄2

〈∣∣∣∣
∂

∂r
ρ (r)

∣∣∣∣
2
〉
− h̄2

∣∣∣∣
〈

∂

∂r
ρ (r)

〉∣∣∣∣
2

.

Both variances can be furthermore used to write its product as it has been done before:

var (r) var (p) ≡ h̄2var (r) var

(
∂

∂r

)
= λ2h̄2,

a final expression which can be easily reduced to the standard deviations:

σ (r) σ (p) ≡ λh̄.

These last results constitute a general form of Heisenberg’s indetermination relation-
ships, defined within the proposed postulate about the nature of momentum in position
space.

3.1 Kinetic energy

The way the electronic kinetic energy K can be defined in these circumstances becomes
quite an easy task. Using the usual expression in terms of the squared momentum, it
can be obtained:

K ≡ 1

2m
|p|2 ≡ h̄2

2m

〈∣∣∣∣
∂

∂r
ρ (r)

∣∣∣∣
2
〉

,

which can be considered for practical purposes as a computational rule, derived from
the postulated form of the linear momentum. The above result constituting a suitable
evaluation of the kinetic energy in some common general way, which can be employed
in cases where only the density function of some system it is known and available, as
commented at the introduction.

For instance, in the one Gaussian density function model example, earlier developed
one can write:
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K ≡ 3α

2m

( α

2π

) 3
2

h̄2.

4 Diatomic molecule model

Having developed the initial working scheme in an atomic-like model example and
having described the general procedure for evaluating kinetic energy using solely the
density function knowledge, it is time to provide several practical illustrations, starting
again with a simple diatomic scheme and extending it afterwards to more involved
complex density function environments.

Suppose, thus, as starting model, some simplified density function expression asso-
ciated to a diatomic molecule. This density function can be chosen as a superposition
of two Gaussian functions, centered at two points in space {RA;RB}, assuming too
the pair of coefficients set {Q A; Q B} might correspond to some atomic population
choice, their sum being the total number of electrons Ne:

ρ (r) = Q Aγ (r − RA |α )+ Q Bγ (r − RB |β )← Q A + Q B = Ne.

The postulated momentum in the way proposed in this paper can be written now as:

p ≡ i h̄
∂

∂r
ρ (r) = −2i h̄ (αQ A (r − RA) γ (r − RA |α )

+βQ B (r − RB) γ (r − RB |β ))

and the corresponding momentum squared module can be now computed as:

|p|2 ≡ 4h̄2

⎡
⎢⎣

(αQ A)2 |r − RA|2
(

α
π

)3 exp
(−2α |r − RA|2

)

+ (βQ B)2 |r − RB |2
(

β
π

)3
exp

(−2β |r − RB |2
)

+ (αβQ A Q B (r − RA) · (r − RB) γ (r − RA |α ) γ (r − RB |β ))

⎤
⎥⎦

Defining: σ = α + β, then the two Gaussian product of the last term can transform
into the usual form of a new Gaussian, centered at the point:P = σ−1 (αRA + βRB)

with exponent σ and multiplied by a factor: κ = exp
(
−αβ

σ
|RA − RB |2

)
. That is, one

can easily write (see for example: [6]):

γ (r − RA |α ) γ (r − RB |β ) = κ

(
αβ

π2

) 3
2

g (r − P |σ ) .

Thus, integration of the above squared momentum expression will produce:

〈
|p|2

〉
≡ 4h̄2

⎡
⎢⎢⎢⎣

(αQ A)2 ( α
π

)3 〈|r|2 exp
(−2α |r|2)〉

+ (βQ B)2
(

β
π

)3 〈|r|2 exp
(−2β |r|2)〉

+αβ
(

αβ

π2

) 3
2
κ Q A Q B 〈(r − RA) · (r − RB) g (r − P |σ )〉

⎤
⎥⎥⎥⎦
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or what is the same:

〈
|p|2

〉
≡ 4h̄2

⎡
⎢⎢⎣

3
4

(
α
(

α
2π

) 3
2 Q2

A + β
(

β
2π

) 3
2

Q2
B

)

+αβ
(

αβ

π2

) 3
2
κ Q A Q B 〈(r − RA) · (r − RB) g (r − P |σ )〉

⎤
⎥⎥⎦

There follows the integral still to be evaluated, which can be written as:

〈(r − RA) · (r − RB) g (r − P |σ )〉 =
(

3

2σ
+ PAB

)(π

σ

) 3
2

So, the final form of the integral needed for the momentum variance evaluation can
be written in this case as:

〈
|p|2

〉
≡ 4h̄2

[
3

4

(
α
( α

2π

) 3
2

Q2
A + β

(
β

2π

) 3
2

Q2
B

)

+αβ

(
αβ

πσ

) 3
2
(

3

2σ
+ PAB

)
κ Q A Q B

]

with the additional definition:

PAB = −αβσ−2 |RA − RB |2

then, the integral of the momentum squared module becomes:

〈
|p|2

〉
≡ 4h̄2

[
3

4

(
α
( α

2π

) 3
2

Q2
A + β

(
β

2π

) 3
2

Q2
B

)

+ αβ

σ

(
αβ

πσ

) 3
2
(

3

2
− αβ

σ
|RA − RB |2

)
κ Q A Q B

]
.

In a first instance it must be noted that the above resultant integral for the momentum
variance, under this simplified computational framework appears to be rotationally
and translationally invariant, as it depends, among other irrelevant parameters, on the
relevant squared distance between the two considered atomic centers.

Such a final expression constitutes also a suitable model for the cases where the
density function is written as a linear combination of atomic density function parts, as it
will be commented below. From the above final expression of the squared momentum
the kinetic energy can be easily deduced.

4.1 Soft nuclear case

Inspired in the work of Andrae [7] and some previous discussion on finite nuclear
charge density [8], a Gaussian nuclear charge density has been recently proposed and
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employed in evaluating completely soft MEP surfaces [9]. Within this soft nuclear
model it can be supposed that in the diatomic model discussed above, the following
simplifications will hold:

α = β ∧ Q A = Z A ∧ Q B = Z B ∧ κ = exp
(
−α

2
|RA − RB |2

)
,

therefore in this case it can be also written:

〈
|p|2

〉
≡ 3α

( α

2π

) 3
2
[

Z2
A + Z2

B + κ
(

1− α

3
|RA − RB |2

)
Z A Z B

]
h̄2.

When both contributions are related to the same atom kind, a further simplified form
can be written, as: Z A = Z B = Z ; so the momentum squared module can be expressed
now like:

〈
|p|2

〉
≡ 3α

( α

2π

) 3
2
[
2+ κ

(
1− α

3
|RA − RB |2

)]
Z2h̄2.

In the above integral the nuclear charge acts as a scale factor. A rough calculation
indicates there is a minimal mean momentum squared module, thus also kinetic energy
becomes minimal for every exponent when distance varies. Note that at zero distance
it will be also obtained:

〈
|p|2

〉
≡ 9α

( α

2π

) 3
2

Z2h̄2,

which constitutes a coherent expression in accord with the one Gaussian model density
function, as discussed in first instance.

5 ASA density function model

Atomic Shell Approximation (ASA) of atomic density functions [10–12] constitute a
general approximation, related to the electronic atomic density functions, which has
been employed to perform customarily quantum similarity calculations, see for exam-
ple: [13–18]. Because of the simple nature of ASA density functions, this scheme has
been chosen here as the second application example of the postulate about momentum
structure in position space and the possibility to obtain kinetic energy from density
functions.

The molecular ASA density functions can be easily described as a linear combina-
tion of a set made of atomic shape ASA functions:

{σI (r − RI ) |I = 1, N } → ∀I : 〈σI (r − RI )〉 = 1,

which in turn are generally defined as convex linear combinations of a given
fixed number of s-type, Minkowski normalized, Gaussian functions. Such con-
vex combinations have been previously fitted to the ab initio density functions of
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atomic structures, constructing in this way some optimally chosen GTO basis set:{∀I : γ (
r − RI

∣∣α I
μ

) |μ = 1, nI
}
.

Therefore the ASA optimized atomic shape functions can be written like:

∀I : σI (r − RI ) =
nI∑

μ=1

cI
μγ

(
r − RI

∣∣∣α I
μ

)
→ 〈σI 〉 =

nI∑
μ=1

cI
μ

〈
γ I
μ

〉
=

nI∑
μ=1

cI
μ = 1.

In constructing approximate molecular density functions, each ASA shape function
defined as above is supposedly centered at the N atomic sites {RI |I = 1, N } of
a given molecular structure. The molecular density function is thus constructed as a
linear combination of atomic centered ASA shape functions, employing as coefficients
a given set of atomic populations {QI |I = 1, N }, which in turn contain the extra
condition to sum up to the number of electrons of the attached molecule, that is:∑N

I=1 QI = Ne. Therefore the molecular ASA densities can be written like:

ρ (r) =
N∑

I=1

QI σI (r − RI ).

5.1 Postulated momentum structure

Evaluation of the postulated form of the momentum operator in position space can be
written now over such ASA molecular density functions as:

p ≡ i h̄
∂

∂r
ρ (r) = i h̄

N∑
I=1

QI
∂

∂r
σI (r − RI ) = −2i h̄

N∑
I=1

QI (r − RI ) θI (r − RI )

where the new function set {θI (r − RI ) |I = 1, N } is easily defined by:

∀I : θI (r − RI ) =
nI∑

μ=1

cI
μα I

μγ
(

r − RI

∣∣∣α I
μ

)
.

The expectation value of the momentum can be evaluated in the way previously done,
so there are the following integrals to be evaluated for this purpose:

∀I, μ :
〈
(r − RI ) γ

(
r−RI

∣∣∣α I
μ

)〉
→

{〈(
xK−X K ,I

)
γ
(

r−RI

∣∣∣α I
μ

)〉
|K = 1, 3

}
;

but this kind of integrals are null, as it has been found beforehand. Thus, the variance
of momentum will correspond only to the integral about its squared module:

〈
|p|2

〉
≡ 4h̄2

N∑
I=1

N∑
J=1

QI Q J 〈[(r−RI ) · (r − RJ )] θI (r−RI ) θJ (r − RJ )〉 ,
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which reduces the problem to the evaluation of integrals like:

∀I, J ;μ, λ : Z I J
μλ = α I

μα J
λ

〈
[(r − RI ) · (r − RJ )] γ

(
r − RI

∣∣∣α I
μ

)
γ
(

r − RJ

∣∣∣α J
λ

)〉
,

which in turn are related with the aforementioned two center momentum variance inte-
grals, previously studied within the two Gaussian functions diatomic density function
model.

Indeed, calling now: σ = α I
μ + α J

λ , the two Gaussian product can transform,
as it has been used beforehand, into the usual form of a new Gaussian, centered at
the point: P = σ−1

(
α I

μRI + α J
λ RJ

)
with exponent σ and multiplied by a factor:

κ = exp

(
−α I

μα J
λ

σ
|RI − RJ |2

)
. Then, the relevant integral becomes:

Z I J
μλ = α I

μα J
λ

(
α I

μα J
λ

π2

) 3
2

κ 〈[(r − P + P − RI ) · (r − P + P − RJ )] g (r − P |σ )〉 ,

and as it was also used before, one can consider the following equality:

(P − RI ) · (P − RJ ) = −α I
μα J

λ σ−2 |RI − RJ |2 .

Thus, the general integral to be employed within the ASA framework in order to
evaluate the ASA kinetic energy can be finally written as a result, which it is also
totally coincident with the formerly described diatomic integral:

Z I J
μλ =

α I
μα J

λ

σ

(
α I

μα J
λ

πσ

) 3
2

κ

(
3

2
− α I

μα J
λ

σ
|RI − RJ |2

)
.

6 Kinetic energy in soft nuclear Gaussian density functions (SNGDF)

This section enlarges the previous Sect. 4.1, including a general study of nuclear DF.
The nature of SNGDF has been recently discussed in terms of molecular electrostatic
potentials, see for example reference [9], and proposed in a more general context to
substitute the usual point-like nuclear repulsion [19]. Although the form of SNGDF
resembles the previously employed ASA molecular DF it is essentially different as it
will be shown below. However, this apparent simplicity allows to use it as an application
example of the way kinetic energy from DF knowledge can be obtained. This feature
has been the reason why it is included in the present work.

The simplest way a SNGDF can be written can be proposed as follows:

ρ (r) =
(α

π

) 3
2
∑

I

Z I exp
(
−α |r − RI |2

)
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where the sum runs over all the nuclei; for the I -th nucleus located at the position RI ,

then Z I is the corresponding atomic number, while a parameter α, associated to the
sharpness of the density peaks centered at each nucleus, is considered homogeneous
for every nuclear charge density. The scale factor appearing in front is nothing else
than the common Minkowski norm of the Gaussian functions appearing within the
sum.

According to the postulate on kinetic energy described in the present work and
which has been earlier described, the momentum generated by such a DF, can be
calculated easily as the nuclear density scaled gradient:

p = i h̄
∂ρ

∂r
= −2i h̄α

(α

π

) 3
2
∑

I

[
Z I exp

(
−α |r − RI |2

)
(r − RI )

]
,

And moreover defining the vector expression:

ω =
(α

π

) 3
2
∑

I

[
Z I exp

(
−α |r − RI |2

)
RI

]
;

then, the momentum can be compactly written with the vector expression:

p = −2i h̄α [ρ (r) r − ω] .

Thus, the kinetic energy could be computed by means of the sum of scalar products of
functions and vectors. However, in a more realistic way than in Sect. 4.1, in order to
include the nuclear masses in the global kinetic energy expression, the contributions
within the summation will be scaled by the factors: ∀I, J : μIJ = 2 Z I Z J√

MI MJ
. The

factor 2 corresponds to the gradient common scale and the rest is equivalent as to
use a weighted soft nuclear density, where the atomic numbersZ I , in order to take
in consideration the inhomogeneity of the nuclear masses, have been substituted by
themselves divided by the square root of the corresponding nuclear mass MI in the
following way:

∀I : Z I ⇒ Z I√
MI
;

Then using the symbol:

E (RI ;RJ ) = exp
(
−α |r − RI |2

)
exp

(
−α |r − RJ |2

)

one can write the soft nuclear kinetic energy expression as:

K ≡ 1

2
|p|2 = h̄2 α5

π3

∑
I

∑
J

μIJ

∫

D

|r − RI |∗ |r − RJ | E (RI ;RJ ) dr,
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which can be expressed in turn as the sum of the three integrals:

I0 = α5

π3

∑
I

∑
J

μIJ (RI∗RJ )

∫

D

E (RI ;RJ ) dr,

I1 = −α5

π3

∑
I

∑
J

μIJ (RI + RJ ) ∗
∫

D

rE (RI ;RJ ) dr

and:

I2 = α5

π3

∑
I

∑
J

μIJ

∫

D

|r|2 E (RI ;RJ ) dr

The basic integral involved in I0 is simply an overlap integral between two normalized
s-type GTO, so one can write:

SIJ =
(α

π

)3
∫

D

E (RI ;RJ ) dr

The integral appearing in I1 can be expressed as a dipole moment auxiliary integral
between two 1s normalized GTO, in the way:

MIJ =
(α

π

)3
∫

D

rE (RI ;RJ ) dr.

Finally, I2 can be written in compact form by means of the integral:

QIJ =
(α

π

)3
∫

D

|r|2 E (RI ;RJ ) dr,

which coincides with the trace of the quadrupole moment integrals, involving in this
way the sum of three integrals like:

XIJ =
(α

π

)3
∫

D

x2 E (RI ;RJ ) dr,

in this manner, substituting x one at a time by y and z, one can write:

QIJ = X I J + YI J + ZIJ.
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The form of the nuclear kinetic energy will depend on the usual product of two GTO
in general centered at two space sites. Taking into account that the central point RP =
1
2 (RI + RJ ) has to be previously defined, then it is well-known that it can be written:

E (RI ;RJ ) = exp
(
−α

2
|RI − RJ |2

)
exp

(
−2α |r − RP |2

)

Therefore, the involved integrals can be rewritten as follows. First the overlap will
produce:

SIJ =
(α

π

)3
exp

(
−α

2
|RI − RJ |2

) ∫

D

exp
(
−2α |r − RP |2

)
dr

=
(α

π

)3
exp

(
−α

2
|RI − RJ |2

) ( π

2α

) 3
2 =

( α

2π

) 3
2

exp
(
−α

2
|RI − RJ |2

)

Second, writing the dipole moment integrals after the manipulation of the GTO prod-
uct, provides:

MIJ =
(α

π

)3
exp

(
−α

2
|RI − RJ |2

) ∫

D

r exp
(
−2α |r − RP |2

)
dr

which will depend on the integral kind:

δx =
+∞∫

−∞
xe−2α(x−X P )2

dx =X P

( π

2α

) 1
2 ;

So, the dipole vector can be written as the overlap scaled midpoint of both GTO
centers:

MIJ =
(α

π

) 3
2

exp
(
−α

2
|RI − RJ |2

)
RP = SIJRP = 1

2
SIJ (RI + RJ ) .

Finally, the intervening quadrupole integrals can be obtained as:

XIJ =
(α

π

)3
exp

(
−α

2
|RI − RJ |2

) ∫

D

x2 exp
(
−2α |r − RP |2

)
dr,

which will depend on the integral kind:

χx =
+∞∫

−∞
x2 exp

(
−2α |x − X P |2

)
dx =

(
1

4α
+ X2

P

)( π

2α

) 1
2
.
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Thus, the generic quadrupole integral might be written as:

XIJ =
(α

π

)3
exp

(
−α

2
|RI − RJ |2

)( 1

4α
+ X2

P

)( π

2α

) 3
2 = SIJ

(
1

4α
+ X2

P

)

and the quadrupole integral in the original kinetic energy contribution can be finally
expressed as:

QIJ = SI J

(
3

4α
+ |RP |2

)
= 1

4
SIJ

(
3

α
+ |RI + RJ |2

)
.

Therefore one can write the nuclear kinetic energy expression as:

K ≡ 1

2
|p|2= h̄2α2

∑
I

∑
J

μIJSI J

(
(RI∗RJ )−|RI+RJ |2+ 1

4

(
3

α
+|RI+RJ |2

))

= h̄2α2
∑

I

∑
J

μIJSI J

(
(RI∗RJ )+ 3

4

(
1

α
− |RI + RJ |2

))

It is interesting to note that the nuclear density sharpness parameter α in the final
expression as shown above, also acts as a scale factor of the nuclear kinetic energy. The
final form of the kinetic energy also possess a set of binuclear form factors involving
the positions of nuclei in space, which can be manipulated as follows:

∀I, J : FIJ = (RI∗RJ )+ 3

4

(
1

α
− |RI + RJ |2

)

= (RI∗RJ )+ 3

4

(
1

α
−

(
|RI |2 + |RJ |2 + 2 (RI∗RJ )

))

= 3

4

(
1

α
−

(
|RI |2 + |RJ |2 + 2

3
(RI∗RJ )

))

with this last definition in mind, the final form of the kinetic energy can be written as
a sum of three factors, acquiring a simple form:

K ≡ h̄2α2
∑

I

∑
J

μIJSIJ FIJ.

7 The LCAO MO density functions as a source of momentum variance

Dilucidated the ASA density function role when evaluating the momentum variance,
one can try to find out how the relatively complicated density function structure in
LCAO MO theory can be handled in order to obtain the postulated momentum variance
and thus the kinetic energy.
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The LCAO MO density function can be written in terms of a normalized
GTO basis set, usually made of real functions, which here will be expressed as:{
χ I

μ (r − RI ) |I = 1, N ;μ = 1, nI
}
. In a similar manner as in the previous ASA

approach, the Latin capital indices mean atomic centers and the Greek indices denote
GTO centered at the associated atomic site. In terms of this basis set, the density
function can be thus expressed as:

ρ (r) =
N∑

I=1

N∑
J=1

nI∑
μ=1

n J∑
λ=1

DI J
μλχ

I
μ (r − RI ) χ J

λ (r − RJ ) ,

where it has been explicitly noted each atomic center, as well as the GTO centered at

it. The matrix elements
{

DI J
μλ |I, J = 1, N ;μ = 1, nI ; λ = 1, n J

}
are the elements

of the density function coordinates matrix, a new nomenclature term which has been
recently proposed by one of us: [20].

The matrix structure of the coordinates of the density function is essentially a conse-
quence of the form taken when represented in terms of the MO set:

{
ϕp (r) |p = 1, ν

}
,

and its total dimension can be easily defined via: ν = ∑N
I=1 nI . In terms of the MO

set and the MO occupation numbers:
{
ωp |p = 1, ν

} ∧∑ν
p=1 ωp = Ne, the density

function can be also described as:

ρ (r) =
ν∑

p=1

ωp
∣∣ϕp (r)

∣∣2 .

7.1 Postulated momentum structure

Taking into account the GTO basis set derivatives, the postulated momentum in posi-
tion space could be written as:

p ≡ i h̄
∂

∂r
ρ (r) = i h̄

N∑
I=1

N∑
J=1

nI∑
μ=1

n J∑
λ=1

DI J
μλ

[
χ J

λ (r − RJ )
∂

∂r

(
χ I

μ (r − RI )
)

+χ I
μ (r − RI )

∂

∂r

(
χ J

λ (r − RJ )
)]

and obviously enough, the nature of the gradients of the GTO basis set acquire a
fundamental role. The gradient vectors, resulting from the derivative involved in the
momentum definition, can be accepted as forming another set of vectors, which for
simplicity can be named as:

{
xI
μ (r − RI ) = ∂

∂r
χ I

μ (r − RI ) |I = 1, N ;μ = 1, nI

}
,

which in turn can be associated with the original GTO basis set to produce a new set
of vectors:
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∀I, J ;μλ : zI J
μλ = xI

μ (r − RI ) χ J
λ (r − RJ ) .

7.2 General description of the gradient of a GTO

Moreover, the gradient of Gaussian functions can be understood as the gradient of a
tensor representing a given GTO of any order. In order to construct a mental image
about how the gradient relationship with the original GTO structure is made of, one
can suppose an unnormalized GTO is represented by the set of the elements of a
symmetrical tensor of rank n constructed as follows:

γn (r |α ) =
(

n⊗
P=1

r
)

γ0 (r |α )← γ0 (r |α ) = exp
(
−α |r|2

)
.

The gradient of the above GTO tensor representation can be easily written as a new
tensor of rank n+1, by using the algorithm:

∂

∂r
⊗ γn (r |α ) = [

nδ (n > 0) I⊗ γn−1 (r |α )− 2αγn+1 (r |α )
]
,

where the symbol I = {δIJ} is the second rank unit tensor and δ (n > 0) is a logical
Kronecker’s delta, which becomes zero or one, depending upon the included condition
becomes false or true, respectively. If the GTO is centered at some point in space, R
say, then it is a matter to use the substitution: r→ r − R in the above formula.

7.3 Evaluation of momentum variance

The evaluation of the mean momentum is necessarily associated to the calculation of
the vector overlap integral involving the three dimensional vectors previously defined:

∀I, J ;μλ : sI J
μλ =

〈
zI J
μλ

〉
.

In this way the mean momentum vector could be written as:

〈p〉 ≡ i h̄

〈
∂

∂r
ρ (r)

〉
= i h̄

N∑
I=1

N∑
J=1

nI∑
μ=1

n J∑
λ=1

DI J
μλ

[
sI J
μλ + sJ I

λμ

]
,

and contrarily to the previous examples, now it might happen to be a set of non-null
integrals vector. In order to proceed to obtain the variance, now it is needed the squared
module of the above expression, thus it can be written:

|〈p〉|2 ≡ h̄2
∣∣∣∣
〈

∂

∂r
ρ (r)

〉∣∣∣∣
2

= h̄2
N∑

I=1

N∑
J=1

nI∑
μ=1

n J∑
λ=1

N∑
P=1

N∑
Q=1

n P∑
α=1

nQ∑
β=1

DI J
μλ DP Q

αβ

[
sI J
μλ + sJ I

λμ

]
·
[
sP Q
αβ + sQ P

βα

].
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The scalar products between the overlap vectors can be symbolized by a unique com-
pletely symmetric scalar symbol:

S

(
I J P Q
μλαβ

)
=

[
sI J
μλ + sJ I

λμ

]
·
[
sP Q
αβ + sQ P

βα

]

using it, the squared module of the mean momentum vector can be simply written as:

|〈p〉|2 ≡ h̄2
N∑

I=1

N∑
J=1

nI∑
μ=1

n J∑
λ=1

N∑
P=1

N∑
Q=1

n P∑
α=1

nQ∑
β=1

DI J
μλ DP Q

αβ S

(
I J P Q
μλαβ

)
,

which can be also seen as a quadratic form between the density function coordinates

matrix, considered now as a vector: |D〉 =
{

DI J
μλ

}
, and the matrix of the scalar products

between the overlap vectors: S =
{

S

(
I J P Q
μλαβ

)}
, that is:

|〈p〉|2 ≡ h̄2 〈D|S |D〉 .

On the other hand, the mean value of the squared momentum module can be described
first by using the squared module written as:

〈
|p|2

〉
≡ h̄2

〈∣∣∣∣∣∣
N∑

I=1

N∑
J=1

nI∑
μ=1

n J∑
λ=1

DI J
μλ

[
zI J
μλ + zJ I

λμ

]
∣∣∣∣∣∣

2〉

and then realizing that a similar expression as the squared module of the momentum
mean value can be written. Using the vector symbol for the hybrid gradient-orbital
products, then there has to be now evaluated a generic integral type as:

Z

(
I J P Q
μλαβ

)
=

〈[
zI J
μλ + zJ I

λμ

]
·
[
zP Q
αβ + zQ P

βα

]〉
,

which can be expressed by the sum of a set of four integral terms involving scalar
products of the vectors bearing GTO functions and their gradients:

Z

(
I J P Q
μλαβ

)
=

〈
zI J
μλ · zP Q

αβ

〉
+

〈
zI J
μλ · zQ P

βα

〉
+

〈
zJ I
λμ · zP Q

αβ

〉
+

〈
zJ I
λμ · zQ P

βα

〉
,

where now each one of the four contributions corresponds to another sum of three
overlap integrals, involving in turn four center GTO. As a final general result though,
one can also write:

〈
|p|2

〉
≡ h̄2

N∑
I=1

N∑
J=1

nI∑
μ=1

n J∑
λ=1

N∑
P=1

N∑
Q=1

n P∑
α=1

nQ∑
β=1

DI J
μλ DP Q

αβ Z

(
I J P Q
μλαβ

)
,
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which allows the expression of the momentum variance to be compactly written as:

var (p) ≡ h̄2 〈D|Z− S |D〉 ,

by simply defining the matrix: Z =
{

Z

(
I J P Q
μλαβ

)}
in the same way as the former

matrix S has been defined.

7.4 Evaluation of kinetic energy

Finally, the associated kinetic energy can be easily computed from the quadratic form:

K ≡ h̄2

2m
〈D|Z |D〉 .

8 Conclusions

A postulate reasonably based on the building of the momentum expectation value
in position space has been presented. Such scheme is constructed by means of the
customary quantum mechanical momentum operator and the knowledge of the first
order density function. This logical outline permits to obtain a coherent Heisenberg
uncertainty principle expression for a model density. From there it is possibly to
describe how to construct momentum vectors in position space from density functions.
Once such a construct is set, the expectation values of the momentum, its square and
the squared module of the momentum can be easily set up. This last expectation
value is directly related with the kinetic energy of the system represented by the
known density function. This issue permits to be confident into finding a procedure
to compute approximate quantum mechanically based algorithms using approximate
density functions. Several examples of momentum construction issuing from diverse
density function forms, including the ab initio LCAO MO one, have been presented
and fully developed. In all studied cases no insurmountable computational problems
appear. The possibility to compute kinetic energy from solely knowing first order
density functions seems a feasible characteristic of quantum systems, which can be
transformed into some useful computational feature.
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